BEGIN:VCALENDAR VERSION:2.0 PRODID:-//https://caida.ubc.ca//NONSGML iCalcreator 2.41.92// CALSCALE:GREGORIAN METHOD:PUBLISH UID:33616435-3438-4933-b061-303734623634 X-WR-RELCALID:efc09d74-9c93-479e-a94f-485231ddccde X-WR-TIMEZONE:America/Vancouver X-WR-CALNAME:Computational Visual Pathways for Multi-Task Learning and Simu lation - Rogerio Feris\, Principal Scientist and Manager\, MIT-IBM Watson AI Lab BEGIN:VTIMEZONE TZID:America/Vancouver TZUNTIL:20231105T090000Z BEGIN:STANDARD TZNAME:PST DTSTART:20211107T020000 TZOFFSETFROM:-0700 TZOFFSETTO:-0800 RDATE:20221106T020000 END:STANDARD BEGIN:DAYLIGHT TZNAME:PDT DTSTART:20210314T020000 TZOFFSETFROM:-0800 TZOFFSETTO:-0700 RDATE:20220313T020000 RDATE:20230312T020000 END:DAYLIGHT END:VTIMEZONE BEGIN:VEVENT UID:8ce06902-a478-409d-baa5-65c05a0fac1f DTSTAMP:20260125T043445Z CLASS:PUBLIC CREATED:20211103T003412Z DESCRIPTION:Please register for this event here. Abstract: In this talk\, I will describe approaches that learn data-dependent computational pathways for visual recognition. First\, in the context of multi-task learning\, I will show a method that learns separate computational pathways for differ ent tasks within a unified deep neural network model\, effectively decidin g which features should be shared across tasks\, and which features should be task-specific\, in order to prevent negative interference. Then\, I wi ll show how this approach can be extended to optimize for synthetic traini ng data generation… DTSTART;TZID=America/Vancouver:20211130T140000 DTEND;TZID=America/Vancouver:20211130T150000 LAST-MODIFIED:20211103T011334Z LOCATION:Please register to receive the Zoom link SUMMARY:Computational Visual Pathways for Multi-Task Learning and Simulatio n - Rogerio Feris\, Principal Scientist and Manager\, MIT-IBM Watson AI La b TRANSP:OPAQUE URL:https://caida.ubc.ca/event/computational-visual-pathways-multi-task-lea rning-and-simulation-rogerio-feris-principal END:VEVENT END:VCALENDAR