BEGIN:VCALENDAR VERSION:2.0 PRODID:-//https://caida.ubc.ca//NONSGML iCalcreator 2.41.92// CALSCALE:GREGORIAN METHOD:PUBLISH UID:38333866-3463-4465-b730-373735323539 X-WR-RELCALID:efc09d74-9c93-479e-a94f-485231ddccde X-WR-TIMEZONE:America/Vancouver X-WR-CALNAME:Stochastic Approximation Algorithms with Decision-Dependent Da ta: The Case of Performative Prediction - Hoi-To Wai\, Assistant Professor \, CUHK BEGIN:VTIMEZONE TZID:America/Vancouver TZUNTIL:20261101T090000Z BEGIN:STANDARD TZNAME:PST DTSTART:20241103T020000 TZOFFSETFROM:-0700 TZOFFSETTO:-0800 RDATE:20251102T020000 END:STANDARD BEGIN:DAYLIGHT TZNAME:PDT DTSTART:20240310T020000 TZOFFSETFROM:-0800 TZOFFSETTO:-0700 RDATE:20250309T020000 RDATE:20260308T020000 END:DAYLIGHT END:VTIMEZONE BEGIN:VEVENT UID:84b3c881-dce6-4bff-8a66-0a18498f6604 DTSTAMP:20260122T165427Z CLASS:PUBLIC CREATED:20241206T222743Z DESCRIPTION:Abstract: Stochastic approximation (SA) forms the foundation of numerous online decision-making algorithms under uncertainty. In recent y ears\, it has garnered renewed interest in the dynamic environment setting where streaming data is not independent and identically distributed (i.i. d.)\, but rather correlated and/or decision-dependent. This resurgence of interest stems from its widespread application in contemporary domains\, s uch as reinforcement learning\, performative prediction\, and fine-tuning of large language models (LLMs). This presentation focuses on SA algorithm s applied to stochastic… DTSTART;TZID=America/Vancouver:20241213T100000 DTEND;TZID=America/Vancouver:20241213T110000 LAST-MODIFIED:20241206T225452Z LOCATION:UBC Vancouver Campus\, ICCS 288 SUMMARY:Stochastic Approximation Algorithms with Decision-Dependent Data: T he Case of Performative Prediction - Hoi-To Wai\, Assistant Professor\, CU HK TRANSP:OPAQUE URL:https://caida.ubc.ca/event/stochastic-approximation-algorithms-decision -dependent-data-case-performative-prediction-hoi END:VEVENT END:VCALENDAR