BEGIN:VCALENDAR VERSION:2.0 PRODID:-//https://caida.ubc.ca//NONSGML iCalcreator 2.41.92// CALSCALE:GREGORIAN METHOD:PUBLISH UID:38623832-6335-4437-b964-373161643534 X-WR-RELCALID:efc09d74-9c93-479e-a94f-485231ddccde X-WR-TIMEZONE:America/Vancouver X-WR-CALNAME:Halting Time is Predictable for Large Models: A Universality P roperty and Average-case Analysis - Courtney Paquette\, Research Scientis t\, Google Research BEGIN:VTIMEZONE TZID:America/Vancouver TZUNTIL:20220313T100000Z BEGIN:STANDARD TZNAME:PST DTSTART:20191103T020000 TZOFFSETFROM:-0700 TZOFFSETTO:-0800 RDATE:20201101T020000 RDATE:20211107T020000 END:STANDARD BEGIN:DAYLIGHT TZNAME:PDT DTSTART:20200308T020000 TZOFFSETFROM:-0800 TZOFFSETTO:-0700 RDATE:20210314T020000 END:DAYLIGHT END:VTIMEZONE BEGIN:VEVENT UID:1396fd92-3022-436c-979d-6e6ef161de78 DTSTAMP:20260217T203848Z CLASS:PUBLIC CREATED:20200529T165327Z DESCRIPTION:Please register for this event here. Abstract: Average-case ana lysis computes the complexity of an algorithm averaged over all possible i nputs. Compared to worst-case analysis\, it is more representative of the typical behavior of an algorithm\, but remains largely unexplored in optim ization. One difficulty is that the analysis can depend on the probability distribution of the inputs to the model. However\, we show that almost al l instances of high-dimensional data are indistinguishable to first-order algorithms. Particularly for a class of large-scale problems\, which inclu des random least… DTSTART;TZID=America/Vancouver:20200612T153000 DTEND;TZID=America/Vancouver:20200612T163000 LAST-MODIFIED:20210610T230558Z LOCATION:Please register to receive the Zoom link SUMMARY:Halting Time is Predictable for Large Models: A Universality Proper ty and Average-case Analysis - Courtney Paquette\, Research Scientist\, Go ogle Research TRANSP:OPAQUE URL:https://caida.ubc.ca/event/halting-time-predictable-large-models-univer sality-property-and-average-case-analysis END:VEVENT END:VCALENDAR