BEGIN:VCALENDAR VERSION:2.0 PRODID:-//https://caida.ubc.ca//NONSGML iCalcreator 2.41.92// CALSCALE:GREGORIAN METHOD:PUBLISH UID:63383162-3932-4532-b535-393034376261 X-WR-RELCALID:efc09d74-9c93-479e-a94f-485231ddccde X-WR-TIMEZONE:America/Vancouver X-WR-CALNAME:Learning Generative Models of 3D Shapes: From Implicit Functio ns to Structured Representations - Richard (Hao) Zhang\, Professor\, SFU BEGIN:VTIMEZONE TZID:America/Vancouver TZUNTIL:20221106T090000Z BEGIN:STANDARD TZNAME:PST DTSTART:20201101T020000 TZOFFSETFROM:-0700 TZOFFSETTO:-0800 RDATE:20211107T020000 END:STANDARD BEGIN:DAYLIGHT TZNAME:PDT DTSTART:20200308T020000 TZOFFSETFROM:-0800 TZOFFSETTO:-0700 RDATE:20210314T020000 RDATE:20220313T020000 END:DAYLIGHT END:VTIMEZONE BEGIN:VEVENT UID:8521f720-eb75-48ff-856e-cf1e57344258 DTSTAMP:20251220T054738Z CLASS:PUBLIC CREATED:20210127T231719Z DESCRIPTION:Please register for this event here. Abstract: Unlike images an d video\, 3D shapes are not confined to one standard representation. This is one of the challenges we face when developing deep neural networks (DNN s) to learn generative models of 3D shapes or virtual scenes. So far\, vox el grids\, multi-view images\, point clouds\, and integrated surface patch es have all been considered. In this talk\, I show that traditional convol utional neural networks operating on pixels/voxels may not be best suited for the task. I first present IM-Net\, our recent work on learning implici t functions\, and show the… DTSTART;TZID=America/Vancouver:20210222T130000 DTEND;TZID=America/Vancouver:20210222T140000 LAST-MODIFIED:20210324T232202Z LOCATION:Please register to receive the Zoom link SUMMARY:Learning Generative Models of 3D Shapes: From Implicit Functions to Structured Representations - Richard (Hao) Zhang\, Professor\, SFU TRANSP:OPAQUE URL:https://caida.ubc.ca/event/learning-generative-models-3d-shapes-implici t-functions-structured-representations-richard END:VEVENT END:VCALENDAR