AI & Fundamentals
Reconstructing Training Data from Model Gradient, Provably - Qi Lei, Assistant Professor, NYU

DATE: Tue, July 11, 2023 - 11:30 am

LOCATION: UBC Vancouver Campus, ICCS X836 / Please register to receive Zoom link




Understanding when and how much a model gradient leaks information about the training sample is an important question in privacy. In this talk, we present a surprising result: even without training or memorizing the data, we can fully reconstruct the training samples from a single gradient query at a randomly chosen parameter value. We prove the identifiability of the training data under mild conditions: with shallow or deep neural networks and a wide range of activation functions. We also present a statistically and computationally efficient algorithm based on low-rank tensor decomposition to reconstruct the training data. As a provable attack that reveals sensitive training data, our findings suggest potential severe threats to privacy, especially in federated learning.


Qi Lei is an assistant professor of Mathematics and Data Science at the Courant Institute of Mathematical Sciences and the Center for Data Science at NYU. Previously she was an associate research scholar at the ECE department of Princeton University. She received her Ph.D. from Oden Institute for Computational Engineering & Sciences at UT Austin. She visited the Institute for Advanced Study (IAS)/Princeton for the Theoretical Machine Learning Program. Before that, she was a research fellow at Simons Institute for the Foundations of Deep Learning Program. Her research aims to develop sample- and computationally efficient machine learning algorithms and bridge the theoretical and empirical gap in machine learning. Qi has received several awards, including the Outstanding Dissertation Award, National Initiative for Modeling and Simulation Graduate Research Fellowship, Computing Innovative Fellowship, and Simons-Berkeley Research Fellowship.


Zoom link

< Back to Events